Background Guide
SPRIMUN 2015

Topic 1: Preventing an arms race in outer space

Disarmament and International Security Committee
Introduction

“It’s politically sensitive, but it’s going to happen. Some people don’t want to hear this, and it sure isn’t in vogue, but—absolutely—we’re going to fight in space. We’re going to fight from space and we’re going to fight into space. That’s why the US has development programs in directed energy and hit-to-kill mechanisms. We will engage terrestrial targets someday—ships, airplanes, land targets—from space. »

Commander-in-Chief of US Space Command, Joseph W. Ashy, Aviation Week and Space Technology, August 9, 1996

The desire to reach the sky and explore new planets has all the time been in the man’s conscience. The scientific discoveries of the XVII century, as the Johann Kepler laws on movement of planets or the work on gravity by Newton, enabled the development of technologies for space activities. Since the beginning of the conquest of space since the 1950’s, at the midst of the Cold War, the United Nations have worked to prevent militarization and weaponization of space. The first treaty, signed in 1957, prohibits the use of space for military purposes. Since then, efforts have continuously been made to maintain it as a peaceful zone. However, despite of these calls for its pacific uses, outer-space has been subject of military uses since the beginning of spatial era.

The aim of this DISEC committee will be to define new agreements between all the Member States concerned by this issue. In this guide, we will provides elements on the main debates related to outer-space, the different military programs and they concerns, as well as the legal framework designed by the international community to guarantee its pacific use.

Definition of the terms

Outer-space: As considered in previous treaties, the outer-space is the space above 100 km to 36 000 km above the level of the sea.

Weaponization of outer-space: refers to the placement in orbit of space-based devices that have a destructive capacity. Ground-based systems designed or used to attack space-based assets also constitute space weapons. Weapons that travel through space in order to reach their targets, such as hypersonic technology vehicles, also contribute to the weaponization of space. Many elements of “missile defence” system also constitute space weapons.

Questions and goals of the simulation

The Disarmament and international security committee appeals delegates of The United States of America, The Federation of Russia, The United Kingdom of Great Britain and Northern Ireland, France, People’s Republic of China, South Africa, Algeria, Egypt, India, Pakistan, Iran, Iraq, Israel, Japan, Kazakhstan, Saudi Arabia, South Korea, Syria, Taiwan, Turkey, Germany, Italy, Ukraine, Brazil, Argentina, Mexico, to design new regulation to prevent any conflict in the outer-space.

Main strategic issues

Space is the future theatre of war. It is the main geostrategic key to better understand power of nations. Thus, it affects all countries. More than 80 national or international spatial agencies represent countries’ interest and programs in terms of space activities. Around 50 countries have implemented space programs since 1950, either civil, military or both. Amongst them, the USA, the Russian Federation and China are often seen as a threat. It is not just the hard-line
Russian commentators or the North Korean press that alleges that US military forces are already armed for space warfare: the same assumption often appears in the mainstream Western press as well. However, it is your duty to find a way to regulate aforementioned programs, in order to ensure the limitation of the militarization of space.

Military capacities of most of countries rely more and more on communication and pieces of information generated by satellites. Space facilities became central in the capacity of a country to deploy its ground-based activities. Thus, satellites will be the main target in the near-future. Moreover, aftermaths of a space conflict would be catastrophic for each countries economics.

To begin with, geolocalisation systems could a first target. They orbit around the Earth at an average distance (21 000 km) and have a determined path. They got semi-synchronous orbits, which means that they meet each day a located point in outer space compared to Earth. All systems are concerned by these vulnerabilities from the American one (GPS), to the Russian one (Glonass) and the future European one (Galileo). These concerns are crucial because these satellites are used both by civils and by the Army.

Then, the number of fields which we are dependent from satellites and outer space is growing every day: Telecommunications, Internet, Scientific Research, Meteorologic previsions, etc.

Furthermore, it has become more and more difficult to distinguish today which satellites are used for civil purposes from those who are used for military purposes. Each country’s armies are becoming more and more reliant on satellites, even those used for civil purposes. This questions the duality of the satellites as a civil satellite could be targeted to harm directly the army. It is thus important to reach a consensus upon what should be considered as a weapon in outer space to avoid the aiming of civil facilities.

Context

Historic of space militarization

Since the Second World War, researches and specific development programs have been implemented by countries in order to acquire new
weapons in space. Germany indeed managed to make huge progresses in building rockets. The V-2 rocket is considered as the first viable spatial rocket. After the WWII, the V-2 technology enabled both the USA and the USSR to develop their own space programs. Thus, in the context of the cold, it appeared clearly that space is the strategic keystone of military competition. In 1957, by launching the satellite Spoutnik, USSR marked the beginning of the spatial exploration as well as the opening of the debate around militarization of space.

The international community, even before 1957 and the launching of Sputnik, agreed on the fact that space had to be preserved for pacific use. That is why four great powers (Canada, the USA, France & the United Kingdom) made a proposal to create a system of inspections for every object launched in outer space to guarantee the pacific and scientific use of these objects. Later on, the United Nations adopted the resolution 1348 (XIII) to ensure the pacific aims of the use of space for nations, and the nations concluded several treaties in order to give a juridical framework to this new element of international policies.

Nevertheless, the juridical and diplomatic issues have grown around the use of satellites, since it can be used for civil purposes as well as surveillance, tracking and different aspects of military activities. The satellites have little by little become essential to the army and destroying one of them could highly compromise a country's military capacities. In the context of the Cold War, the USA as well as the USSR began to use reconnaissance satellites because of the ambiguity of the terms used to define the "pacific use" of space objects – it was misinterpreted by those countries.

From Sputnik, weapons in space became more and more specialized in the context of the Cold War. In the 1960's, both the USSR and the USA developed first reconnaissance satellites to take pictures of their rivals' installations and that led to the creation of anti-satellite weapons to destroy each other's satellites. Spy satellites were used to monitor the dismantling of military assets in accordance with arms control treaties signed between the two superpowers. Then, the superpowers developed ballistic missiles to use...
nuclear weaponry across great distances, and that led to the development of intercontinental ballistic missiles (ICBM), which are very dangerous since they are able to strike on any part of the Earth in a timeframe measured in minutes.

The USA developed programs in order to gain space supremacy, such as the Nike-Zeus Program, Project Defender, the Sentinel Program and the Safeguard Program. The Nike-Zeus Program, developed in the 50's involved firing Nike nuclear missiles against incoming ICBMs, thus exploding nuclear warheads over the North Pole but it was replaced by the Project Defender in 1958, which used satellites weapons system orbiting around the USSR. But it was not very efficient, that is why the Sentinel Program was developed with the creation of anti-ballistic missiles (ABM) to counterattack coming ICBMs. In the mid 1970's was deployed the Safeguard Program, based on the Sentinel Program which means it developed ABM facilities, that were finally restricted by the ABM treaty in 1972. In 1983, Ronald Reagan, President of the USA, developed the well-known « Strategic Defense Initiative », a space-based system to protect the United States from attacks by strategic nuclear missiles (because of the rise of tensions with the USSR) but to compete this program all the USSR had to do was build more missiles.

The USSR made many efforts to gain space supremacy, such as the programs R-36ORB Fractional Orbital Bombardment System (FOBS) – that was later prohibited by the SALT II treaty - and Polyus orbital weapons system, which was actually the launch of an Energia rocket in 1987. After the Cold War and the implosion of the USSR, Russia's influence in the field of space weapons was highly questioned. Nevertheless, in 1992 the Russian Space Forces were implemented, to be incorporated into the Strategic Rocket Forces in 1997 and finally, in 2001 the Russian Space Forces were reborn as an independent section of the Russian military.

In response to US weaponisation of space, the Chinese started a space defence program, including anti-satellite defence. In 2007 China conducted a test to destroy the FY-AC polar orbit satellite at an altitude of 865 km thanks to a kinetic kill vehicle. As a reply, in February 2008 the US launched its own strike to destroy a malfunctioning US satellite, which demonstrated the capability to strike in space.

Today, the worries related to militarization of outer-space result from antimissile projects currently developed in USA. These projects adopted a broad definition of defence which includes allies of USA. According to the American administration, the military spatial facilities will be the keystone of its military strategy. The objective is the total control of space activities.

One of the first difficulty in dealing with weapons in outer-space is the qualification of weapons. Indeed, everything in space can be used and so, considered as a weapons: from debris to conventional weapons or asteroids. The most relevant typology of new weapons in outer-space includes:

Intercontinental ballistic missiles (ICBM)

The missiles can be launched from earth or directly from space or from a space satellite. They can be directed to targets located in space or on earth, as well as being launched on earth, directed to an earth target and passing through space. The targets can be satellites in case of anti-satellites missiles, missiles for anti-missile defence system, or a terrestrial target. They can be charged with nuclear or conventional material.

The ballistic missiles and anti-missile defence systems are all designed to send explosive charges or interceptors, meaning that they all have the capacity to destroy any satellite. The present technology already enable ICBM to reach the moon. Until ballistic missiles are not prohibited or destroyed, it will not be possible to
forbid states, which owns such weapons to possess anti-satellites capacities. Thus, negotiations related to forbidding anti-satellites missiles have to include ballistic missiles’ questions.

Regarding nuclear missiles, among states who own long-distance ballistic missiles and nuclear arsenal, USA is the only one country who operated nuclear missile test in space.

Satellites and Nanosatellites

Satellites, as much as their uses, can be considered as "power-enhancers", which means that their interest regarding military activity is the expansion of actions directed towards ground-targets rather than actions themselves. However, the scientific progress enabled new attack systems raising the risk of war between satellites.

As for now, this issue is particularly focusing on non-nuclear missiles and high energy laser weapons. Anti-missile device have to follow a strict procedure: detection, acknowledgment and destruction. However, such electronic systems are vulnerable. The international law face a crucial lack of regulation regarding the launching and use of non-nuclear weapons.

UN resolutions do not provide any rules related to nanosatellites. The last generation of nanosatellites weigh less than 10 kilos. These nanosatellites can be hiding explosive charges and are able to reach and dock secretly other satellites in order to inspect or damage them. This technology is basic and available to most of countries.

Directed-energy weapons

Terrestrial or high-altitude weapons using electromagnetic energy may destroy and disrupt electronic and electrical devices, causing a burst of electromagnetic radiation (electromagnetic pulse, or EMP) to produce current and voltage surges. Directed-energy weapons use lasers, high powered microwaves, and particle beams. Projects in development by the US are named Airborne Laser, the Active Denial System and the Tactical High Energy Laser (THEL).

Spatial mines

Part of anti-satellites defence system, mines have to change their orbit and reached its targets to damage it. If spatial mines were easy to detect in the space, new generation of spatial mines reaches undetectable micro-sizes of 5 to 10 cm. No use of spatial mines has been released, but the
technology exists and controls are hardly possible once launched in space. Even if it is technically complicated, a future negotiation could include controls of satellites before launching in space thanks to other satellites. More easy would be a control of planned trajectory of all special objects before their launching. Alert satellite could then notify in case of change in orbit’s trajectory.

Spatial manoeuvrable device (SMD)

Every SMD, inhabited or automatized, can be considered as a weapon. Indeed, it can shoot, strike, damage or scramble connections. The US Air forces developed the reusable robotic X-37B Orbital Test Vehicle (OTV): a small space shuttle-like craft. However, approaching a satellite with a manoeuvrable device is still complex, especially in case of non-cooperative targets. A future treaty on ban of weapons in the space should include convincing control measures of SMD. Thus, the orbit, the maneuver planned and the reserve in fuel could be watched out.

Air launchers of SMD and warheads

SMD and warheads can be launched directly from aircraft, increasing precision and reducing time for reaction. Since 1958, USA tested several air missiles launcher such as Prototype Miniature Air-Launched System (PMALS): a small space shuttle-like craft. Nowadays, air forces of USA have at their disposal the Pegasus and Pegasus XL launcher. In Russian Federation, several projects are designed based on AN-124 and AN-225. Air Launcher of SMD and warheads are not included in any treaty related to space activities.

However, there are a few points we would like to draw your attention on. Stationing weapons in space for use against ground targets has long ago been recognized as far more expensive and less flexible than basing them on Earth. Even planning a space-to-space attack can take hours or days or longer for the moving attacker and target to line up in a proper position. This goes double for nuclear weapons: putting them into space on a permanent basis was last taken seriously in the Sunday comics in the late 1950’s. So these accusations seem to confuse proposed projects (usually already rejected—that is why the proponents go public with their ideas) or even Hollywood science fiction for actual hardware.

Furthermore, we have to remind you that scientific exploration should always be accessible to any country, according to the article II of the Treaty on (...). Avoiding space warfare should not limit access to space for scientific purposes.

National strategies

Involved in the cold war against USSR, USA were dependent on their capacity to gather information thanks to air intelligence services. The increasing facilities of soviets in terms of interceptors and air defence increased the risk of...
surveillance, which raised the interest of USA in satellites. Since, the USA planned their political and diplomatic strategy in order to protect the legality of satellite surveillance.

Thus, Delegates should be notified that the topic of military spatial activities is regularly blocked by US representatives in the Disarmament conference - an UN organ that take decision on consensus. Besides, the lack of consensus on the terms “space”, “spatial weapons” and “pacific uses” make the law-making process harder.

As the years go by, more and more countries develop their own space program (more than 50 nations) and 600 satellites are present in outer space, reshuffling the cards of the balance of powers. This why we are now going to see how the traditional space powers are coping with the rise of new actors in space.

The United States of America

In 2002, as a counsellor to G.W. Bush, Condolezza Rice decided to review the US policy regarding spatial activities. The USA have indeed always been, since the Cold War, the most modern and effective in this field, but the gap with other countries tends to diminish. They indeed possess in 2001 110 military satellites whereas the Russian Federation owned 40 of them and the 20 remaining satellites belonged to other nations. The USA fear the rise of Indian and Chinese reconnaissance satellites more and more narrowly-specialized that they could be a threat to the American supremacy regarding space devices. In 1999, the budget of the United States dedicated to militarize space was about 94,8% of the total of military spatial budget of all the countries. That is why it can easily be said that in order to find an agreement, all member states countries really take the initiative to open the discussion with the USA before they implement their own program concerning arms in space without any international talks.

People's Republic of China

People's Republic China as much less spatial engines compared to the USA but this nation has many ambitious projects when it comes to arms race in outer space. Since the 80's, China tries to manage to implement an international treaty about non-armament in space in order to curb the USA's influence in this area that is why PRC has led the negotiations at the UN since many years with the purpose of implementing concrete rules quickly. Their engineers in fact claim that spatial weapons not only threaten China's security but also the world's one.

Nevertheless, China remains quite secretive about its true intentions and about its own spatial development, using the argument of the American supremacy to develop its programs. That is why you delegates should focus your debates on these particular interrogations regarding China's enrolment and goals in the weaponization of space.

The Russian Federation

Russia has been during the second half of the 20th Century a leader in spatial armament, but since the dislocation of the USSR and the end of the Cold War, Russian equipment grew old and the government did not invested enough money to keep it from being outdated because funds were not sufficient. The authorities tried to improve this precarious situation by combining its commercial programs as well as all its militarized spatial programs but it is not yet sufficient to counter dilapidated state of the missiles, which can become rather worrying for the international community.

Furthermore, the Russian government has expressed the same interrogations as China regarding the operations of the USA in space, that is why Russia highly developed since the beginning of the 2000's its technical skills, and the country has now acquired the capacity, on a long-term approach, to reach the level of the USA. It then raises many questions concerning
this rise of Russia than is also one of the points you delegates should focus on.

Europe

European countries are less involved in the weaponization of space, contrary to the USA. They would rather develop programs aiming at favouring sustainable development, the management of the planet and its economic and social repercussions.

France and the United Kingdom are rather focused on civil development in space than military activities. France practises diverse activities in space such, from launching to Earth observation and plays an important part in the Galileo project. The British are present in space as well but for civil purposes and its programs are far from being militarized as the USA's or China's.

Nevertheless, European countries depend on the USA and would support them if a collation had to be made. Europe could not lead a military operation in space by itself, if the region is involved, it would follow the American power.

Risks and Dangers of a « Star War »

A leitmotiv of pasts PAROS resolution preamble was to impeach an arm race in outer space. Nevertheless, even if delegates should concentrate in how we should face such phenomenon, they shall keep in mind to what extent their countries’ interests would be jeopardized.

A first direct consequence of such race would be significant chill in International Relations. Considering the destructive power of weapons in outer space, a failure to a Mutually Assured Destruction doctrine should be feared. As one side would decide to attack, the other side would have the possibility to replicate against, annihilating both parties. Equilibrium was set as no would start an open conflict, especially during the Cold War.

However, as the USA withdrew from the Anti-Ballistic Missile Treaty in 2002, numerous countries denounced this aggressive stance. Indeed, some strategists from the American Air Force emitted doubts as it could trigger incentives for other countries to place weapons in orbit. Constructing anti-missile system would infringe upon this equilibrium as one state could easily prevent from being armed by the other’s strike.

Alexei Arbatov, Director of the Center on International Securities Studies in Moscow wrote after this announcement that “The strategic balance between the United States and Russia is becoming less stable, and the objective, technical possibility of a first strike by the United States is increasing. At a time of crisis, this instability could lead to an accidental nuclear war. For instance, if Russia feared a U.S. first strike, Moscow might make rash moves (such as putting its forces on alert) that would provoke a U.S. attack.”

On the one hand, USA fears a potential preemptive-attack from anti-satellites weapons or the explosion of a nuclear device in outer space on their interest and justify their anti-satellite weapons development policy. On the other hand, other governments are concerned by their own vulnerabilities in front of a potential space weapons hegemony of the USA. It is a security dilemma; countries that do not threaten USA are tempted to enhance their own security systems, which increase in the end the global insecurity of the situation.

To conclude with, an arms race in outer would create an auto maintained increase in global insecurity feeling, leading governments to enhance their defence systems. A single sparkle could then trigger a completely global and violent conflict. The debate is thus utterly paradoxical as some countries struggles to
implement weapons bans in outer space although they develop their own arsenal not to be distanced by the USA.

THE LEGAL FRAMEWORK

Concerning the legal framework, it is important to notice that it is essentially made up by international decisions such as treaties and United Nations resolutions. Indeed, their bases were created during the Cold War in order to prevent a “Star War”, as Reagan would have said, between both sides of the Iron Curtain.

Thus, we will discuss first the important treaties, then how the UN played an important role in the discussion and finally we will highlight the major legal issue that you will be facing during the simulation.

International Treaties

Further treaties would have impact, to specify on related topics such as the Rescue Agreement of 1968 or the Liability Convention of 1972 on the responsibility of States on damages caused by Space Objects. Both were adopted again by the General Assembly.

The Registration Convention of 1975, adopted by the General Assembly is also crucial as it permitted to impose to States to make transparent information about the name(s) of Launching State(s), an appropriate designator of the space object or its registration number, the date and territory or location of launch, basic orbital parameters and the general function of the Space Object (Article IV). This treaty is also meant to avoid secret missions and to build confidence relations between States. This Treaty gave also an important role to the United Nations, which centralizes the information.

Moreover, the Moon Agreement of 1979, endorsed by the COUPUSOS and adopted by the General Assembly, added new specifications hammering the ban on weapons AND the establishment of military bases, installations and fortifications, the testing of any type of weapons and the conduct of military manoeuvres on the Moon. Nevertheless, the use of military personnel for scientific research or for any other peaceful purposes shall not be prohibited.

To begin with, it is important to notice that preventing an arm race in outer has been considered as a proper issue since 1958, regarding the danger of nuclear weapons, with a resolution of the General Assembly claiming, “that outer space should be used for peaceful purposes only,” and creating the Committee on Peaceful Use in Outer Space (COPUOS).

In 1963, the Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and Under Water, first announced a ban on nuclear weapon test in outer space to prevent his proliferation. Nevertheless, China, France and North Korea did not sign it.

However, the first real treaty, considering Outer Space as an issue for the peaceful development of humankind was the Outer Space Treaty, engineered by the COPUOS, adopted by the UN General Assembly and entered into force in 1967. It anchored basic principles into international relations in outer space between countries such as which today make a clear consensus for Spatial States (Except Iran that signed but not ratified it):

- Outer Space shall be free for exploration and use by all States
- Outer Space is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means
- States shall not place nuclear weapons of mass destruction in orbit, or on celestial bodies or station them in outer space in any other manner
States shall be liable for damage caused by their space objects
States shall avoid harmful contamination of space and celestial bodies

Juridical Issues and Debates

Nevertheless, treaties are showing their limits now as they fail to encircle the reality of weaponry in Outer Space, introducing a need to new proposals.

To begin with, there is vagueness on several definitions in the treaties.

For instance, in any treaty, the term “Outer Space” has been defined. Indeed, the limit between our atmosphere and Outer Space is implicitly placed at 100 km above the sea level. The lack of any legal international definition was considered as useful as he permitted to make flexible Space Law. However, this lack is threatening the effectiveness of the treaties, especially with the development of Space planes for instance.

Nevertheless, a clear consensus has emerged since the Outer Space Treaty upon the strict prohibition of nuclear weapons in Outer Space or Celestial Bodies. This issue has not been questioned since therefore.

In addition, the term “pacific purposes” has been debated, especially by the USA and USSR since the Cold War. According to USA, “pacific” is assimilated to “non-aggressive” and States should keep a right of self-defence in outer space, in accordance with the article 51 of the Charter of the United Nations. On the other hand, USSR interpreted that the existence of a right of self-defence should not permit the use of certain type of weapons such as bacteriologic weapons. However, Russia has now recognized how crucial monitoring satellites are to verify the respect of the treaties by other States.

Moreover, the scientific development has progressively outdated some articles of these treaties. Some States fear the rising of new conventional weapons able to target and take down outer space satellites or to reach terrestrial territories through orbital trajectories. For instance, the 1972 Anti-Ballistic Missile Treaty should have permit to restrain Anti-Satellite Technology, but the withdrawal of the United States of America in 2002 re-accented the need of a new legislation to curb a potential arms race in Outer Space.

A new departure to strengthened proposals

Facing the obsolescence of old legislations, the last decade has seen new proposals and draft emerging in order to finally give the international community the right tools to prevent a race.

First, prevention of an arms race in outer space (PAROS) has established a legal framework since a few decades.

For instance, the Conference on Disarmament (Permanent multi-lateral treaty negotiating body, independent from the United Nations) has created ad hoc a committee in 1985 to discuss especially of a PAROS treaty that would complement the 1967 Outer Space treaty. Nevertheless, it is known that the committee made little progress during the end of the XX Century because of the blocking of some Western Countries (especially the United States of America).

Through the First Committee, the General Assembly has regularly pointed out the emergency of the negotiation of a PAROS treaty through numerous resolutions such as A/C.1/66/L.14 in 2014.

Despite of the blocking, some countries arrived to present draft propositions to discuss.

In 2008, China and Russia initiated the Prevention of the placement of weapons in outer
space Treaty (PPWT) to the Conference on Disarmament. A working paper of 2002, written by Russia, China, Vietnam, Indonesia, Belarus, Zimbabwe, and Syria, inspired this first draft.

In addition, defining debated terms such as Outer Space, Outer Space Object, Weapons in Outer Space and Use of Force, this draft treaty focused on the prohibition of placing weapons in orbit and to install Transparency and Confidence Building Measures (TCBMs). Moreover, these measures were not in contradiction with the free exploration and free use of Outer Space principles and the self-defense right. Nevertheless, USA rejected the draft considering it as “a diplomatic ploy by the two nations to gain a military advantage”.

A new draft was presented in 2014 with specifications as for instance the role of the UN, but makes disappears the “outer space” definition.

Concerning TCBMs, after a 2007 report of the UN Secretary-General, it has to be noticed that a consensus report was introduced to the General Assembly in 2013 by a Group of Governmental Expert, calling for measure including coordination and consultative mechanisms for instance. Furthermore, it recommended establishing increased coordination between the Office for Disarmament Affairs, the Office for Outer Space Affairs and other appropriate UN entities.

Finally yet importantly, the European Union began in 2008 a procedure to build an International Code of Conduct for Outer Space Activities (ICoC). As it is not a proper treaty, it has to be seen as a voluntary basis of principles amongst states. Thus, it proclaims:

- All countries’ inheritable right to use space for peaceful purposes
- Protection of security and reliability of space objects in orbit; and
- Consideration for states’ legitimate defence interests

If Australia, Canada, Japan and USA endorsed now the ICoC, some countries such as Brazil, Russia, India and China were disappointed that their opinions would have not been asked and raised concerns about their future possibilities of outer space activities development.

Conclusion

Law making has been initiated and several treaties signed in order to limit the implementation of weapons in outer-space, however, the success of these measures are more due to difficulty to launching on orbit than thanks to the strength of these agreements. Cost and complexity of means to put on orbit explains the failure of negative projects. Nevertheless, in a really close future, less expensive means will be developed. They will open the outer-space space to more countries, no matter their intentions or stability.

If the international community is convicted to prevent a future war in the outer-space, other countries who have space activities should impulse a better control and risk management over these issues. The international community should define more precise methods of control to set up limits over range and technologies.

It is up to you, dear delegates, to find new international solutions to prevent an arms race in outer space!
TO GO FURTHER

On the international legal framework
- last draft “Prevention of an arms race in outer space”: A/C.1/69/L.3/Rev.1, and “No first placement of weapons in outer space” A/C.1/69/L.14

On spatial programs

General information:
- Reaching critical will: http://www.reachingcriticalwill.org/search?q=space
- On the last draft submitted by China and Russia: http://www.thespacereview.com/article/2575/1